
Hierarchical Recurrent Neural Network for Skeleton Based Action Recognition

Yong Du, Wei Wang, Liang Wang
Center for Research on Intelligent Perception and Computing, CRIPAC

Nat’l Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
{yong.du, wangwei, wangliang}@nlpr.ia.ac.cn

Abstract

Human actions can be represented by the trajectories of
skeleton joints. Traditional methods generally model the
spatial structure and temporal dynamics of human skeleton
with hand-crafted features and recognize human actions by
well-designed classifiers. In this paper, considering that re-
current neural network (RNN) can model the long-term con-
textual information of temporal sequences well, we propose
an end-to-end hierarchical RNN for skeleton based action
recognition. Instead of taking the whole skeleton as the in-
put, we divide the human skeleton into five parts accord-
ing to human physical structure, and then separately feed
them to five subnets. As the number of layers increases, the
representations extracted by the subnets are hierarchically
fused to be the inputs of higher layers. The final represen-
tations of the skeleton sequences are fed into a single-layer
perceptron, and the temporally accumulated output of the
perceptron is the final decision. We compare with five other
deep RNN architectures derived from our model to verify
the effectiveness of the proposed network, and also com-
pare with several other methods on three publicly available
datasets. Experimental results demonstrate that our model
achieves the state-of-the-art performance with high compu-
tational efficiency.

1. Introduction
As an important branch of computer vision, action recog-

nition has a wide range of applications, e.g., intelligent

video surveillance, robot vision, human-computer interac-

tion, game control, and so on [15, 36]. Traditional studies

about action recognition mainly focus on recognizing ac-

tions from videos recorded by 2D cameras. But actually,

human actions are generally represented and recognized in

the 3D space. Human body can be regarded as an articu-

lated system including rigid bones and hinged joints which

are further combined into four limbs and a trunk [31]. Hu-

man actions are composed of the motions of these limbs

and trunk which are represented by the movements of hu-
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Figure 1: An illustrative sketch of the proposed hierarchi-

cal recurrent neural network. The whole skeleton is divided

into five parts, which are fed into five bidirectional recur-

rent neural networks (BRNNs). As the number of layers

increases, the representations extracted by the subnets are

hierarchically fused to be the inputs of higher layers. A

fully connected layer and a softmax layer are performed on

the final representation to classify the actions.

man skeleton joints in the 3D space [37]. Currently, reliable

joint coordinates can be obtained from the cost-effective

depth sensor using the real-time skeleton estimation algo-

rithms [27, 28]. Effective approaches should be investigated

for skeleton based action recognition.

Human skeleton based action recognition is generally

considered as a time series problem [5, 17], in which the

characteristics of body postures and their dynamics over

time are extracted to represent a human action. Most of

the existing skeleton based action recognition methods ex-

plicitly model the temporal dynamics of skeleton joints by

using Temporal Pyramids (TPs) [19, 31, 33] and Hidden

Markov Models (HMMs) [20, 34, 35]. The TPs methods

are generally restricted by the width of the time windows

and can only utilize limited contextual information. As for

HMMs, it is very difficult to obtain the temporal aligned se-

quences and the corresponding emission distributions. Re-

cently, recurrent neural networks (RNNs) with Long-Short

Term Memory (LSTM) [8, 10] neurons have been used for

action recognition [1, 11, 16]. All this work just uses sin-

gle layer RNN as a sequence classifier without part-based



feature extraction and hierarchical fusion.

In this paper, taking full advantage of deep RNN in mod-

elling the long-term contextual information of temporal se-

quences, we propose a hierarchical RNN for skeleton based

action recognition. Fig. 1 shows the architecture of the pro-

posed network, in which the temporal representations of

low-level body parts are modeled by bidirectional recurrent

neural networks (BRNNs) and combined into the represen-

tations of high-level parts.

Human body can be roughly decomposed into five parts,

e.g., two arms, two legs and one trunk, and human actions

are composed of the movements of these body parts. Given

this fact, we divide the human skeleton into the five corre-

sponding parts, and feed them into five bidirectionally re-

currently connected subnets (BRNNs) in the first layer. To

model the movements from the neighboring skeleton parts,

we concatenate the representation of the trunk subnet with

those of the other four subnets, respectively, and then in-

put these concatenated results to four BRNNs in the third

layer as shown in Fig. 1. With the similar procedure, the

representations of the upper body, the lower body and the

whole body are obtained in the fifth and seventh layers, re-

spectively. Up to now, we have finished the representation

learning of skeleton sequences. Finally, a fully connected

layer and a softmax layer are performed on the obtained rep-

resentation to classify the actions. It should be noted that,

to overcome the vanishing gradient problem when training

RNN [8, 12], we adopt LSTM neurons in the last BRNN

layer.

In the experiments, we compare with five other deep

RNN architectures derived from our proposed model to ver-

ify the effectiveness of the proposed network, and compare

with several methods on three publicly available datasets.

Experimental results demonstrate that our method achieves

the state-of-the-art performance with high computational

efficiency. The main contributions of our work can be sum-

marized as follows. Firstly, to the best of our knowledge,

we are the first to provide an end-to-end solution for skele-

ton based action recognition by using hierarchical recurrent

neural network. Secondly, by comparing with other five de-

rived deep RNN architectures, we verify the effectiveness

of the necessary parts of the proposed network, e.g., bidi-

rectional network, LSTM neurons in the last BRNN layer,

hierarchical skeleton part fusion. Finally, we demonstrate

that our proposed model can handle skeleton based action

recognition very well without sophisticated preprocessing.

The remainder of this paper is organized as follows. In

Section 2, we introduce the related work on skeleton based

action recognition. In Section 3, we first review the back-

ground of RNN and LSTM, and then illustrate the details of

the proposed network. Experimental results and discussion

are presented in Section 4. Finally, we conclude the paper

in Section 5.

2. Related Work
In this section, we briefly review the existing literature

that closely relates to the proposed model, including three

categories of approaches representing temporal dynamics

by local features, sequential state transitions and RNN.

Approaches with local features By clustering the ex-

tracted joints into five parts, Wang et al. [32] use the spatial

and temporal dictionaries of the parts to represent actions,

which can capture the spatial structure of human body and

movements. Chaudhry et al. [2] encode the skeleton struc-

ture with a spatial-temporal hierarchy, and exploit Linear

Dynamical Systems to learn the dynamic features. Vemu-

lapalli et al. [31] utilize rotations and translations to rep-

resent the 3D geometric relationships of body parts in Lie

group, and then employ Dynamic Time Warping (DTW)

and Fourier Temporal Pyramid (FTP) to model the tempo-

ral dynamics. Instead of modelling temporal evolution of

features, Luo et al. [19] develop a novel dictionary learn-

ing method combined with Temporal Pyramid Matching, to

keep the temporal dynamics. To represent both human mo-

tions and correlative objects, Wang et al. [33] first extract

the local occupancy patterns from the appearance around

skeleton joints, and then process them with FTP to obtain

temporal structure. Zanfir et al. [38] propose a moving pose

descriptor for capturing postures and skeleton joints. Us-

ing five joints coordinates and their temporal differences as

inputs, Cho and Chen [4] perform action recognition with a

hybrid multi-layer perceptron. In the above methods, the lo-

cal temporal dynamics is generally represented within a cer-

tain time window or differential quantities, it cannot glob-

ally capture the temporal evolution of actions.

Approaches with sequential state transitions Lv et
al. [20] extract local features of individual and partial com-

binations of joints, and train HMMs to capture the ac-

tion dynamics. Based on skeletal joints features, Wu and

Shao [34] adopt a deep forward neural network to estimate

the emission probabilities of the hidden states in HMM,

and then infer action sequences. To accurately calculate the

similarity between two sequences with Dynamic Manifold

Warping, Gong et al. [5] perform both temporal segmen-

tation and alignment with structured time series represen-

tations. Though HMM can model the temporal evolution

of actions, the input sequences have to be segmented and

aligned, which in itself is a very difficult task.

Approaches with RNN The combination of RNN and

perceptron can directly classify sequences without any seg-

mentation. By obtaining sequential representations with a

3D convolutional neural network, Baccouche et al. [1] pro-

pose a LSTM-RNN to recognize actions. Regarding the

histograms of optical flow as inputs, Grushin et al. [11] use

LSTM-RNN for robust action recognition and achieve good

results on KTH dataset. Considering that LSTM-RNNs em-

ployed in [1] and [11] are both unidirectional with only one



hidden layer, Lefebvre et al. [16] propose a bidirectional

LSTM-RNN with one forward hidden layer and one back-

ward hidden layer for gesture classification.

All the work above just uses RNN as a sequence classi-

fier while we propose an end-to-end solution including both

feature learning and sequence classification. Considering

the fact that human actions are composed of the motions of

human body parts, we use RNN in a hierarchical way.

3. Our Model
In order to put our proposed model into context, we first

review recurrent neural network (RNN) and Long-Short

Term Memory neuron (LSTM). Then we propose a hier-

archical bidirectional RNN to solve the problem of skeleton

based action recognition. Finally, five relevant deep RNNs

with different architectures are also introduced.

3.1. Review of RNN and LSTM

The main difference between RNN and the feedforward

networks is the presence of feedback loops which produce

the recurrent connection in the unfolded network. With the

recurrent structure, RNN can model the contextual infor-

mation of a temporal sequence. Given an input sequence

x = (x0, . . . , xT−1), the hidden states of a recurrent layer

h = (h0, . . . , hT−1) and the output of a single hidden

layer RNN y = (y0, . . . , yT−1) can be derived as fol-

lows [8, 9, 10].

ht = H(Wxhx
t +Whhh

t−1 + bh) (1)

yt = O(Whoh
t + bo) (2)

where Wxh, Whh, Who denote the connection weights from

the input layer x to the hidden layer h, the hidden layer h
to itself and the hidden layer to the output layer y, respec-

tively. bh and bo are two bias vectors, H(·) and O(·) are the

activation functions in the hidden layer and the output layer.

Generally, it is very difficult to train RNNs (especially

deep RNNs) with the commonly-used activation functions,

e.g., tanh and sigmoid functions, due to the vanishing gra-

dient and error blowing up problems [8, 12]. To solve these

problems, the Long-Short Term Memory (LSTM) architec-

ture has been proposed [10, 13], which replaces the nonlin-

ear units in traditional RNNs. Fig. 2 illustrates a LSTM

memory block with a single cell. It contains one self-

connected memory cell c and three multiplicative units, i.e.,

the input gate i, the forget gate f and the output gate o,

which can store and access the long range contextual infor-

mation of a temporal sequence.

The activations of the memory cell and three gates are

given as follows:

it = σ(Wxix
t +Whih

t−1 +Wcic
t−1 + bi) (3)

f t

otit

ctxt

Forget gate

Cell

Output gate

Feedback

Input gate

xt

xtxt

ht

Figure 2: Long Short-Term Memory block with one cell [8].

f t = σ(Wxfx
t +Whfh

t−1 +Wcfc
t−1 + bf ) (4)

ct = f tct−1 + ittanh(Wxcx
t +Whch

t−1 + bc) (5)

ot = σ(Wxox
t +Whoh

t−1 +Wcoc
t + bo) (6)

ht = ottanh(ct) (7)

where σ(·) is the sigmoid function, and all the matrices W
are the connection weights between two units.

In order to utilize the past and future context for every

point in the sequence, Schuster and Paliwal [26] proposed

the bidirectional recurrent neural network (BRNN), which

presents the sequence forwards and backwards to two sep-

arate recurrent hidden layers. These two recurrent hidden

layers share the same output layer. A bidirectional recurrent

neural network is illustrated in Fig. 3. It should be noted

that we can easily obtain LSTM-BRNN just by replacing

the nonlinear units in Fig. 3 with LSTM blocks.

Forward layer

xt+1xt-1 xtInput

Output

Backward layer

Figure 3: The architecture of bidirectional recurrent neural

network [8].

3.2. Hierarchical RNN for Skeleton Based Action
Recognition

According to human physical structure, the human skele-

ton can be decomposed into five parts, e.g., two arms, two

legs and one trunk. Simple human actions are performed

by only one part of them, e.g., punching forward and kick-

ing forward mainly depend on swinging the arms and legs,

respectively. Some actions come from moving the upper

body or the lower body, e.g., bending down mainly relates
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Figure 4: The architecture of our proposed model.

to the upper body. More complex actions are composed of

the motions of these five parts, e.g., running and swimming

need to coordinate the moving of arms, legs and the trunk.

To effectively recognize various human actions, modelling

the movements of these individual parts and their combina-

tions is very necessary. Benefiting from the power of RNN

to access the contextual information, we propose a hierar-

chical bidirectional RNN for skeleton based action recogni-

tion. Different from traditional methods modelling the spa-

tial structure and temporal dynamics with hand-crafted fea-

tures and recognizing actions by well-designed classifiers,

our model provides an end-to-end solution for action recog-

nition.

The framework of the proposed model is shown in Fig.

4. We can see that our model is composed of 9 layers, i.e.,

bl1 − bl4, fl1 − fl3, fc, and sl, each of which presents dif-

ferent structures and thus plays different role in the whole

network. In the first layer bl1, the five skeleton parts are

fed into five corresponding bidirectionally recurrently con-

nected subnets (BRNNs). To model the neighboring skele-

ton parts, e.g., left arm-trunk, right arm-trunk, left leg-trunk,

and right leg-trunk, we combine the representation of the

trunk subnet with that of the other four subnets to obtain

four new representations in the fusion layer fl1. Similar to

the layer bl1, these resulting four representations are sepa-

rately fed into four BRNNs in the layer bl2. To model the

upper and lower body, the representations of the left arm-

trunk and right arm-trunk BRNNs are further combined to

obtain the upper body representation while the representa-

tions of the left leg-trunk and right leg-trunk BRNNs are

combined to obtain the lower body representation in the

layer fl2. Finally, the newly obtained two representations

are fed into two BRNNs in the layer bl3, and the represen-

tations of these two BRNNs in the layer bl3 are fused again

to represent the whole body in the layer fl3. The temporal

dynamics of the whole body representation is further mod-

elled by another BRNN in the layer bl4. From a viewpoint

of feature learning, these stacked BRNNs can be considered

to extract the spatial and temporal features of the skeleton

sequences. After obtaining the final features of the skeleton

sequence, a fully connected layer fc and a softmax layer

sm are performed to classify the action.

As mentioned in Section 3.1, the LSTM architecture can

effectively overcome the vanishing gradient problem while

training RNNs [8, 12, 13]. However, we just adopt LSTM

neurons in the last recurrent layer (bl4). The first three

BRNN layers all use the tanh activation function. This is a

trade-off between improving the representation ability and

avoiding overfitting. Generally, the number of weights in a

LSTM block is several times more than that in a tanh neu-

ron. It is very easy to overfit the network with limited train-

ing sequences.

3.3. Training

Training the proposed model contains a forward pass and

a backward pass.

Forward pass: For the i-th BRNN layer bli at time t, given

the q-th inputs Itiq and tanh activation function, the corre-

sponding q-th representations of the forward layer and back-

ward layer
−→
h t

iq
,
←−
h t

iq
are defined as follows

−→
h t

iq = tanh(W
Iiq

−→
h iq

Itiq +W−→
h iq

−→
h iq

−→
h t−1

iq
+ b−→

h iq
) (8)

←−
h t

iq = tanh(W
Iiq

←−
h iq

Itiq +W←−
h iq

←−
h iq

←−
h t+1

iq
+ b←−

h iq
) (9)

where all the matrices W , vectors b are the corresponding

connection weights and biases.

For the following fusion layer fli at time t, the p-

th newly concatenated representation as the input of the

(i+ 1)-th BRNN layer bli+1 is

It(i+1)p
=

−→
h t

ij

⊕←−
h t

ij

⊕−→
h t

ik

⊕←−
h t

ik
(10)

where
⊕

denotes the concatenation operator,
−→
h t

ij
and

←−
h t

ij
are the hidden representations of the forward layer and

backward layer of the j-th part in the i-th BRNN layer,
−→
h t

ik

and
←−
h t

ik
from the k-th part in the i-th layer.

For the last BRNN layer bl4 with LSTM neurons, the for-

ward output
−→
h t

bl4
and backward output

←−
h t

bl4
can be derived

from Eqn. (3-7).

Combining
−→
h t

bl4
and

←−
h t

bl4
as the input to the fully con-

nected layer fc, the output Ot of the layer fc is

Ot = W−→
h bl4

−→
h t

bl4 +W←−
h bl4

←−
h t

bl4 (11)

where W−→
h bl4

, W←−
h bl4

are the connection weights from the

forward and backward layers of bl4 to the layer fc.



Finally, the outputs of the layer fc are accumulated

across the T frame sequence, and the accumulated results

{Ak} are normalized by the softmax function to get each

class probability p(Ck):

A =
T−1∑

t=0

Ot (12)

p(Ck) =
eAk

∑C−1
i=0 eAi

(13)

Here there are C classes of human actions.

The objective function of our model is to minimize the

maximum-likelihood loss function [8]:

L(Ω) = −
M−1∑

m=0

ln

C−1∑

k=0

δ(k − r)p(Ck|Ωm) (14)

where δ(·) is the Kronecker function, and r denotes the

groundtruth label of the sequence Ωm. There are M se-

quences in the training set Ω.

Backward pass: We use the back-propagation through

time (BPTT) algorithm [8] to obtain the derivatives of

the objective function with respect to all the weights, and

minimize the objective function by stochastic gradient de-

scent [8].

3.4. Five Comparative Architectures

In order to verify the effectiveness of the proposed net-

work, we compare with other five different architectures

derived from our proposed model. As illustrated before,

we propose a hierarchically bidirectional RNN (HBRNN-
L) for skeleton based action recognition (the suffix “-L”

means that only the last recurrent layer consists of LSTM

neurons, and the rest likewise). To prove the importance

of the bidirectional connection, a similar network with uni-

directional connection is proposed, which is called hierar-

chically unidirectional RNN (HURNN-L). To verify the

role of part-based feature extraction and hierarchical fu-

sion, we compare a deep bidirectional RNN (DBRNN-L),

which is directly stacked with several RNNs with the whole

human skeleton as the input. Furthermore, we compare

a deep unidirectional RNN (DURNN-L) which does not

adopt both the bidirectional connection and the hierarchi-

cal fusion. To further investigate whether LSTM neurons in

the last recurrent layer are useful to overcome the vanish-

ing/exploding problem in RNN, we examine another two

architectures DURNN-T and DBRNN-T. Here DURNN-T

and DBRNN-T are the similar networks to DURNN-L and

DBRNN-L, but with the tanh activation function in all lay-

ers. It should be noted that all the six architectures have five

learnable layers, i.e., four recurrent hidden layers and one

fully connected layer. And the number of neurons in the

fully connected layer is equal to that of action categories.

4. Experiments

In this section, we evaluate our model and compare with

other five different architectures and several recent work on

three benchmark datasets: MSR Action3D Dataset [18],

Berkeley Multimodal Human Action Dataset (Berkeley

MHAD) [22], and Motion Capture Dataset HDM05 [21].

We also discuss the overfitting issues and the computational

efficiency of the proposed model.

4.1. Evaluation Datasets

MSR Action3D Dataset: It is generated by a Microsoft

Kinect-like depth sensor, which is widely used in action

recognition. This dataset consists of 20 actions performed

by 10 subjects in an unconstrained way for two or three

times, 557 valid samples with 22077 frames. All sequences

are captured in 15 FPS, and each frame in a sequence con-

tains 20 skeleton joints. The low accuracy of the skeleton

joint coordinates and the partial fragment missing in some

sequences make this dataset very challenging.

Berkeley MHAD: It is captured by a multimodal acqui-

sition system, in which an optical motion capture system

is used to capture the 3D position of active LED markers

with the frequency of 480 Hz. This dataset contains 659

sequences for 11 actions performed by 12 subjects with 5

repetitions of each action. In each frame of the sequence,

there are 35 joints accurately extracted according to the 3D

marker trajectory.

Motion Capture Dataset HDM05: It is captured by an

optical marker-based technology with the frequency of 120

Hz, which contains 2337 sequences for 130 actions per-

formed by 5 non-professional actors, and 31 joints in each

frame. To our knowledge, this dataset is currently the

largest depth sequence database which provides the skele-

ton joint coordinates for action recognition. As stated in [4],

some samples of these 130 actions should be classified into

the same category, e.g., jogging starting from air and jog-

ging starting from floor are the same action, jogging 2 steps

and jogging 4 steps belong to the same “jogging” action.

After sample combination, the actions are reduced to 65 cat-

egories.

4.2. Data Preprocessing and Parameter Settings

In our proposed model, all the human skeleton joints

are divided into five parts, i.e., two arms, two legs and one

trunk, which are illustrated in Fig. 5. We can see that there

are 4 joints for each part in MSR Action3D dataset. For

Berkeley MHAD and HDM05 datasets, the joint numbers

of arms, legs and the trunk are listed as follows: 7, 7, 7 and

7, 5, 7.

Given that human actions are independent of its absolute

spatial position, we normalize the skeleton joints to an uni-

fied coordinate system. The origin of the coordinate system



Table 1: The parameter settings of our proposed model and the five compared models on three evaluation datasets. The DU.T

is short for DURNN-T, and the rest likewise. The LLi indicates the i-th learnable layer (bli in HBRNN-L).

Layer
MSR Action3D Berkeley MHAD & HDM05

DU.T DB.T DU.L DB.L HU.L HB.L DU.T DB.T DU.L DB.L HU.L HB.L

LL1(bl1) 80 40 80 40 30 × 5 15 × 2 × 5 90 60 80 40 40 × 5 15 × 2 × 5

LL2(bl1) 120 80 120 80 60 × 4 30 × 2 × 4 180 120 160 80 80 × 4 30 × 2 × 4

LL3(bl3) 240 120 180 100 90 × 2 60 × 2 × 2 240 120 180 100 100 × 2 60 × 2 × 2

LL4(bl4) 120 80 80 40 80 × 1 40 × 2 × 1 120 60 90 60 90 × 1 60 × 2 × 1

is defined as follows

O = (Jhip center + Jhip left + Jhip right)/3 (15)

where Jhip center is the 3D coordinate of the hip center, and

the other two have the similar meanings.

To improve the signal to noise ratio of the raw data, we

adopt a simple Savitzky-Golay smoothing filter [25] to pre-

process the data. The filter is designed as follows

fi = (−3xi−2+12xi−1+17xi+12xi+1−3xi+2)/35 (16)

where xi denotes the skeleton joint coordinate in the i-th
frame, and fi denotes the filtering result.

Considering that the trajectories of the skeleton joints

vary smoothly, we sample the frames from the sequences in

the fixed interval to reduce the computation cost. There are

every 16 frames sampled for the Berkeley MHAD dataset

and every 4 frames for the HDM05 dataset. We do not

sample frames from MSR Action3D dataset due to the lim-

ited frame rates (15 FPS) and average length (less than 40

frames).

Tab. 1 shows the parameter settings of our proposed

model and the five compared models on three evaluation

datasets. Each value in the table indicates the number of

neurons used in the corresponding layer, e.g., the number

30 × 5 (LL1, HU.L) means that each unidirectional subnet

in the first learnable layer of HURNN-L has 30 neurons, and

the number 15×2×5 (LL1, HB.L) indicates that each bidi-

rectional subnet in the first BRNN layer (bl1) of HBRNN-L

has 15×2 neurons. These six networks on the same dataset

have roughly the same number of weights.

It should be noted that the results of all the comparative

methods on the three datasets are from their corresponding

papers.

4.3. Experimental Results and Analysis

MSR Action3D Dataset: Although there are several vali-

dation methods summarized in [24] on this dataset, we fol-

low the standard protocol provided in [18]. In this standard

protocol, the dataset is divided into three action sets AS1,

AS2 and AS3. The samples of subjects 1, 3, 5, 7, 9 are used

for training while the samples of subjects 2, 4, 6, 8, 10 are

used for testing. We compare the proposed model HBRNN-

L with Li et al. [18], Chen et al. [3], Gowayyed et al. [6],
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Figure 5: The human skeleton joints are divided into five

parts in these three datasets.

Vemulapalli et al. [31] and other five variant architectures

DURNN-T, DBRNN-T, DURNN-L, DBRNN-L, HURNN-

L. The experimental results are shown in Tab. 2. We can

see that our proposed HBRNN-L achieves the best average

accuracy and outperforms the four methods in [3, 6, 18, 31]

with hand-crafted features, and the performances of two de-

rived models HURNN-L and DBRNN-L are promising. It

should be noted that although Chen et al. [3] and Vemula-

palli et al. [31] achieve the best performance in action sets

AS1 and AS3, respectively, our HBRNN-L outperforms

them with respect to the average accuracy. Furthermore,

HBRNN-L performs consistently well on these three action

sets, which indicates that HBRNN-L is more robust to vari-

ous data.

Table 2: Experimental results on the MSR Action3D

Dataset.

Method AS1 AS2 AS3 Ave.

Li et al., 2010 [18] 72.9 71.9 79.2 74.7

Chen et al., 2013 [3] 96.2 83.2 92.0 90.47

Gowayyed et al., 2013 [6] 92.39 90.18 91.43 91.26

Vemulapalli et al., 2014 [31] 95.29 83.87 98.22 92.46

DURNN-T 75.24 75.00 81.08 77.11

DBRNN-T 81.90 80.36 88.29 83.52

DURNN-L 87.62 91.96 90.01 89.86

DBRNN-L 88.57 93.75 95.50 92.61

HURNN-L 92.38 93.75 94.59 93.57

HBRNN-L 93.33 94.64 95.50 94.49

The fact that HBRNN-L obtains higher average accu-

racy than HURNN-L, DBRNN-L and DURNN-L, proves

the importance of bidirectional connection and hierarchical

feature extraction. All the networks with LSTM neurons



in the last recurrent layer (with suffix “-L”) are better than

their corresponding networks with tanh activation functions

(with suffix “-T”), which verifies the effectiveness of LSTM

neurons in the proposed network.
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Figure 6: Confusion matrices of HBRNN-L on MSR Ac-

tion3D dataset.

The confusion matrices on the three action sets are

shown in Fig. 6. We can see that the misclassifications

mainly occur among several very similar actions. For ex-

ample in Fig. 6a, the action “PickupAndThrow” is of-

ten misclassified to “Bend” while the action “Forward-

Punch” is misclassified to “TennisServe”. Actually, “Picku-

pAndThrow” just has one more “throw” move than “Bend”,

and the “throw” move often holds few frames in the se-

quence. So it is very difficult to distinguish these two

actions. The actions “ForwardPunch” and “TennisServe”

share a large overlap in the sequences. Distinguishing them

is also very challenging with only joint coordinates.

Berkeley MHAD: We follow the experimental protocol

proposed in [22] on this dataset. The 384 sequences of

the first 7 subjects are used for training while the 275 se-

quences of the last 5 subjects are used for testing. We com-

pare our proposed model with Ofli et al. [23], Vantigodi

et al. [30], Vantigodi et al. [29], Kapsouras et al. [14],

Chaudhry et al. [2], as well as DURNN-T, DBRNN-T,

DURNN-L, DBRNN-L, HURNN-L. The experimental re-

sults are shown in Tab. 3. We can see that HBRNN-L

achieves the 100% accuracy with a simple preprocessing

and performs better than those five derived RNN architec-

tures, which proves the advantages of the proposed model

once again. Meanwhile, the six RNN architectures obtain

higher accuracy than Ofli et al. [23], Vantigodi et al. [30],

Vantigodi et al. [29], Kapsouras et al. [14], and comparable

results with Chaudhry et al. [2], which means that our pro-

posed model provides an effective end-to-end solution for

modelling temporal dynamics in action sequences.

HDM05: We follow the experimental protocol proposed in

[4] and perform 10-fold cross validation on this dataset. We

compare our proposed model with Cho and Chen [4] and

other five architectures DURNN-T, DBRNN-T, DURNN-

L, DBRNN-L, HURNN-L. The experimental results are

showed in Tab. 4. The proposed model HBRNN-L ob-

tains the state-of-the-art accuracy of 96.92% with the stan-

Table 3: Experimental results on the Berkeley MHAD.

Method Acc.(%) Method Acc.(%)

Ofli et al., 2014 [23] 95.37 DURNN-T 98.55

Vantigodi et al., 2013 [30] 96.06 DBRNN-T 99.27

Vantigodi et al., 2014 [29] 97.58 DURNN-L 98.55

Kapsouras et al., 2014 [14] 98.18 DBRNN-L 99.64

Chaudhry et al., 2013 [2] 99.27 HURNN-L 99.64

Chaudhry et al., 2013 [2] 100 HBRNN-L 100

dard deviation of 0.50. The derived models HURNN-L,

DBRNN-L and DURNN-L also obtain excellent results.

Table 4: Experimental results on the HDM05.

Method Ave.(%) Std.

Cho and Chen, 2013 [4] 95.59 0.76

DURNN-T 94.63 1.16

DBRNN-T 94.79 1.11

DURNN-L 96.62 0.53

DBRNN-L 96.70 0.51

HURNN-L 96.70 0.41

HBRNN-L 96.92 0.50
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Figure 7: Two typical confusion matrices of HBRNN-L on

the HDM05 dataset. The numbers on the horizontal and

vertical axes correspond to the action categories [4].

Two typical confusion matrices of the 10-fold cross-

validation from HBRNN-L are shown in Fig. 7. We can

see that our model performs well on most of the ac-

tions. The misclassifications mainly come from the follow-

ing categories: “5-depositHighR”, “6-depositLowR”, “7-

depositMiddleR”, “10-grabHighR”, “11-grabLowR”, and

“12-grabMiddleR”. Further checking the “grab” and “de-

posit” related skeleton sequences, we find that these two

categories of actions share the similar spatial and tempo-

ral variations. Both of them can be decomposed into three

sub-actions in chronological order: stretching out one hand,

grabbing or depositing something, and drawing back the

hand. The minor differences between grabbing and de-

positing something make it difficult to distinguish these two

kinds of actions. It should be noted that although the orig-

inal 130 actions are reduced to 65 categories, there are still



several confusing categories, e.g., “39-sitDownChair” and

“42-sitDownTable”, which should belong to the same ac-

tion. Without the context of actions, e.g., recognizing chair

and table from their appearances, it is very difficult to dis-

tinguish these actions just from skeleton streams.

4.4. Discussion

Overfitting issues: The experiments show that the mod-

els with suffix “-L” are easy to overfit while the others with

suffix “-T” always underfit during training. It may be the

vanishing gradient problem by using tanh activation func-

tion in all the layers. In order to overcome the overfitting

problem in our proposed HBRNN-L and other derived net-

works with suffix “-L”, we adopt the strategies like adding

the input noise, weight noise and early stopping [7, 8]. In

our practice, we find that adding the weight noise is more

effective than adding the input noise, and the commonly-

used dropout strategy [39] does not work here. For the un-

derfitting problem of the models with suffix “-T”, we use

the retraining strategy by tuning learning rate and adding

various levels of input noise and weight noise.

Computational efficiency: We take the Berkeley MHAD

dataset for an example to illustrate the efficiency of

HBRNN-L. With C++ implementation on a CPU 3.2GHz

system, we spend 50s for each epoch consisting of 384 se-

quences (average 127ms per sequence) during training. Af-

ter about 30 epochs, we can get an accuracy greater than

98%. During testing, it takes 52.46 ms per sequence (about

234 frames per sequence). It should be mentioned that

HURNN-L, which achieves comparable performance with

HBRNN-L, runs much faster and is more suitable for online

applications.

5. Conclusion and Future Work

In this paper, we proposed an end-to-end hierarchical re-

current neural network for skeleton based action recogni-

tion. We first divide the human skeleton into five parts, and

then feed them to five subnets. As the number of layers

increases, the representations in the subnets are hierarchi-

cally fused to be the inputs of higher layers. A perceptron is

performed on the learned representations of the skeleton se-

quences to obtain the final recognition results. Experimen-

tal results on three publicly available datasets demonstrate

the effectiveness of the proposed network.

As we analyzed on the HDM05 and MSR Action3D

datasets, the similar human actions are very difficult to be

distinguished just from the skeleton joints. In the future, we

will consider to combine more features into the proposed

hierarchical recurrent neural network, e.g., object appear-

ance.

Acknowledgement
This work was supported by the National Basic Research

Program of China (2012CB316300) and National Natu-

ral Science Foundation of China (61175003, 61135002,

61202328, 61420106015, U1435221).

References
[1] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and

A. Baskurt. Sequential deep learning for human action

recognition. In Human Behavior Understanding, pages 29–

39. Springer, 2011. 1, 2

[2] R. Chaudhry, F. Ofli, G. Kurillo, R. Bajcsy, and R. Vidal.

Bio-inspired dynamic 3d discriminative skeletal features for

human action recognition. In IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 471–478.

IEEE, 2013. 2, 7

[3] C. Chen, K. Liu, and N. Kehtarnavaz. Real-time human ac-

tion recognition based on depth motion maps. Journal of
Real-Time Image Processing, pages 1–9, 2013. 6

[4] K. Cho and X. Chen. Classifying and visualizing mo-

tion capture sequences using deep neural networks. CoRR,

abs/1306.3874, 2013. 2, 5, 7

[5] D. Gong, G. Medioni, and X. Zhao. Structured time se-

ries analysis for human action segmentation and recognition.

IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, VOL. 36, NO. 7, 2014. 1, 2

[6] M. A. Gowayyed, M. Torki, M. E. Hussein, and M. El-Saban.

Histogram of oriented displacements (hod): describing tra-

jectories of human joints for action recognition. In Inter-
national Joint Conference on Artificial Intelligence, pages

1351–1357. AAAI Press, 2013. 6

[7] A. Graves. Practical variational inference for neural net-

works. In Advances in Neural Information Processing Sys-
tems, pages 2348–2356, 2011. 8

[8] A. Graves. Supervised sequence labelling with recurrent
neural networks, volume 385. Springer, 2012. 1, 2, 3, 4,

5, 8

[9] A. Graves and N. Jaitly. Towards end-to-end speech recog-

nition with recurrent neural networks. In International Con-
ference on Machine Learning, pages 1764–1772, 2014. 3

[10] A. Graves, A. Mohamed, and G. Hinton. Speech recogni-

tion with deep recurrent neural networks. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing, pages 6645–6649. IEEE, 2013. 1, 3

[11] A. Grushin, D. D. Monner, J. A. Reggia, and A. Mishra. Ro-

bust human action recognition via long short-term memory.

In International Joint Conference on Neural Networks, pages

1–8. IEEE, 2013. 1, 2

[12] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber.

Gradient flow in recurrent nets: the difficulty of learning

long-term dependencies, 2001. 2, 3, 4

[13] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural Computation, 9(8):1735–1780, 1997. 3, 4

[14] I. Kapsouras and N. Nikolaidis. Action recognition on

motion capture data using a dynemes and forward differ-



ences representation. J. Vis. Comun. Image Represent.,
25(6):1432–1445, Aug. 2014. 7

[15] J. Koutnı́k, J. Schmidhuber, and F. Gomez. Evolving deep

unsupervised convolutional networks for vision-based rein-

forcement learning. In Conference on Genetic and Evolu-
tionary Computation, pages 541–548. ACM, 2014. 1

[16] G. Lefebvre, S. Berlemont, F. Mamalet, and C. Garcia.

Blstm-rnn based 3d gesture classification. In Artificial
Neural Networks and Machine Learning, pages 381–388.

Springer, 2013. 1, 3

[17] K. Li and Y. Fu. Prediction of human activity by discovering

temporal sequence patterns. IEEE Transactions on Pattern
Analysis and Machine Intelligence, VOL. 36, NO. 8, 2014. 1

[18] W. Li, Z. Zhang, and Z. Liu. Action recognition based on a

bag of 3d points. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops, pages

9–14. IEEE, 2010. 5, 6

[19] J. Luo, W. Wang, and H. Qi. Group sparsity and geometry

constrained dictionary learning for action recognition from

depth maps. In IEEE International Conference on Computer
Vision, pages 1809–1816. IEEE, 2013. 1, 2

[20] F. Lv and R. Nevatia. Recognition and segmentation of 3-

d human action using hmm and multi-class adaboost. In

European Conference on Computer Vision, pages 359–372.

Springer, 2006. 1, 2
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